

Fig. 11. Valeurs du maximum du profil de réflexion total obtenues expérimentalement pour diverses valeurs du gradient thermique. courbe théorique dont l'échelle a été ajustée pour correspondre aux valeurs expérimentales. Ο, Δ, valeurs experimentals.

Références

Ando, Y. & Kato, N. (1966). Acta Cryst. 21, 284. Auther A., (1961). Bull. Soc. franç. Minér. Crist. 84, 51. Authier, A., Malgrange, C. & Tournarie, M. (1968). Acta Cryst. A24, 126.

Brenner, A. & Riddell Grace, E. J. (1946). J. Res. Nat. Bur. Stand. 37, 31.

Brenner, A. & RIDDELL GRACE, E. J. (1947) *J. Res. Nat. Bur. Stand.* 39, 385.

GIBBONS, D. F. (1958). Phys. Rev. 112, 136.

HART, M. (1966). Z. Phys. 189, 268.

HILDEBRANDT, G. (1959). Z. Kristallogr. 112, 312.

KATO, N. (1963). J. Phys. Soc. Japan, 18, 1785.

KATO, N. (1964a). J. Phys. Soc. Japan, 19, 67.

KATO, N. (1964b). J. Phys. Soc. Japan, 19, 971.

KATO, N. & ANDO, Y. (1966). J. Phys. Soc. Japan, 21, 964

OKKERSE, B. & PENNING, P. (1963). *Philips Res. Repts.* **18**, 82.

Penning, P. & Polder, D. (1961). *Philips Res. Repts.* 16, 419.

TAKAGI, S. (1962). Acta Cryst. 15, 1311.

TAUPIN, D. (1964). Bull. Soc. franç. Minér. Crist. 87,

Acta Cryst. (1969). A25, 363

Propriétés des Groupes d'Espace de Classe et de Réseau Donnés. Construction des Groupes d'Espace et des Groupes Magnétiques

Par J. Sivardière

Centre d'Etudes Nucléaires, Rue des Martyrs 38, Grenoble, France

(Reçu le 8 juillet 1968)

Space groups having the same translation subgroup and the same point group form an Abelian finite group. This property is used to simplify the construction of space groups. The case of magnetic groups is examined too, and the results are interpreted in Fourier space.

Propriété d'additivité des groupes d'espace

Soit G_e un groupe d'espace de réseau T et de classe G, $(\alpha|\tau_{\alpha})$ et $(\beta|\tau_{\beta})$ deux éléments de G_e :

$$(\alpha|\tau_{\alpha}) (\beta|\tau_{\beta}) = (\alpha\beta|\alpha\tau_{\beta} + \tau_{\alpha})$$
$$= (\varepsilon|\mathbf{T}_{\alpha,\beta}) (\alpha\beta|\tau_{\alpha\beta}). \tag{1}$$

On voit que G_e est une extension de G par T, définie par une application A de $G \times G$ dans T: à tout couple de rotations ponctuelles α et β , on associe une translation entière $T_{\alpha,\beta}$. [Si on ajoute aux translations τ_{α} et τ_{β} des translations entières arbitraires, on obtient une application A' équivalente, définissant le même groupe G_e (Ascher & Janner, 1965.)]

L'application A satisfait la relation fonctionnelle suivante exigée par l'associativité du produit $(\alpha|\tau_{\alpha})$ $(\beta|\tau_{\beta})$ $(\gamma|\tau_{\gamma})$:

$$\mathbf{T}_{\alpha, \beta} + \mathbf{T}_{\alpha\beta, \gamma} = \mathbf{T}_{\alpha, \beta\gamma} + \alpha \mathbf{T}_{\beta, \gamma} , \qquad (2)$$

soit au total $g^2 - g$ relations.

Réciproquement soit A une application de $G \times G$ dans T satisfaisant ces g^2-g relations, elle définit un groupe d'espace de réseau T et de classe G. On peut en effet déterminer g vecteurs τ_{α} satisfaisant les g^2 relations linéaires:

$$\alpha \tau_{\beta} + \tau_{\alpha} = \mathbf{T}_{\alpha, \beta} + \tau_{\alpha\beta} . \tag{3}$$

Considérons alors deux groupes G_e^1 et G_e^2 de réseau T et de classe G, définis par les applications A_1 et A_2 (à une équivalence près). Soit A l'application somme de A_1 et A_2 , définie par:

$$\mathbf{T}_{\alpha, \beta} = \mathbf{T}_{\alpha, \beta}^{1} + \mathbf{T}_{\alpha, \beta}^{2}. \tag{4}$$

L'application A satisfait la même relation fonctionnelle que A_1 et A_2 et par suite elle définit un groupe d'espace G_e de même réseau T et de même classe G, que nous appellerons somme de G_e^1 et G_e^2 .

Plus précisément, si τ_{α}^1 et τ_{α}^2 sont les translations non primitives associées à α dans G_e^1 et G_e^2 , $\tau_{\alpha} = \tau_{\alpha}^1 + \tau_{\alpha}^2$ est la translation associée à α dans G_e .

En effet:

$$\alpha \tau_{\beta}^{1} + \tau_{\alpha}^{1} = \mathbf{T}_{\alpha, \beta}^{1} + \tau_{\alpha\beta}^{1},$$

$$\alpha \tau_{\beta}^{2} + \tau_{\alpha}^{2} = \mathbf{T}_{\alpha, \beta}^{2} + \tau_{\alpha\beta}^{2},$$

$$\alpha (\tau_{\beta}^{1} + \tau_{\beta}^{2}) + (\tau_{\alpha}^{1} + \tau_{\alpha}^{2}) = \mathbf{T}_{\alpha, \beta} + \tau_{\alpha\beta}.$$
Si:
$$\tau_{i} = \tau_{i}^{1} + \tau_{i}^{2},$$
on a bien:

$$T_{\alpha, \beta} = T_{\alpha, \beta}^{1} + T_{\alpha, \beta}^{2}$$
.

Connaissant deux groupes d'espace de réseau T et de classe G, on en construit ainsi simplement un troisième en additionnant les translations non primitives associées à une même rotation. On écrit symboliquement, par exemple:

$$Pba2 + Pmc2_1 = Pbn2_1$$
.

Les groupes d'espace de réseau T et de classe G forment donc un groupe (T,G), abélien puisque T est abélien. Dans certains cas, il peut être nécessaire de préciser la position des éléments de G par rapport au réseau: ainsi les groupes P321 et P312, P2mm et Pmm2 n'appartiennent pas au même groupe; au contraire Pnc2 et Pcn2 appartiennent au même groupe. D'autre part il peut être nécessaire de changer l'origine choisie dans les International Tables for X-ray Crystallography (1952) pour pouvoir constater la propriété d'additivité (c'est le cas si on veut vérifier que: $P222_1 + P2_12_12 =$ $P2_12_12_1$).

Le groupe (T, G) est fini; l'élément unité est le groupe symmorphique $T \wedge G$; l'ordre d'un élément de (T,G)est au plus égal à l'ordre maximum des éléments de G.

Exemple: T: réseau orthorhombique primitif. G: groupe ponetuel mm^2 .

L'ordre de (T,G) est 16. Ses éléments sont:

Pmm2	Pma2	Pbm2	Pba2
Pcc2	Pcn2	Pnc2	Pnn2
$Pmc2_1$	$Pmn2_1$	$Pbc2_1$	$Pbn2_1$
$\overline{Pcm2}_1$	$Pca2_1$	$Pnm2_1$	$Pna2_1$

Les éléments soulignés sont seuls décrits dans les International Tables, les autres s'en déduisent par des permutations d'axes (plus généralement, deux éléments de (T,G) peuvent être isomorphes, c'est-à-dire équivalents en tant que groupes d'espace). On peut choisir comme générateurs du groupe (T,G) ci-dessus les groupes G_e suivants: Pmm2, Pma2, Pbm2, Pcc2, Pmc2₁.

Les groupes G_e dans lesquels à un élément α , par exemple un élément générateur, de la classe G sont associées des translations nulles ou parallèles à un axe ou un plan donnés, forment un sous-groupe de (T, G). Ainsi dans l'exemple ci-dessus, les 8 groupes dans lesquels l'axe 2 n'est pas hélicoïdal forment un sousgroupe d'ordre 8. Plus généralement, les groupes hémisymmorphiques* de (T,G) forment un sous-groupe: ainsi Pmmm, Pnnn, Pccm, Pban et les groupes isomorphes forment un sous-groupe de l'ensemble des groupes D_{2h} (un autre sous-groupe est constitué par les groupes précédents, Pmma, Pcca et les groupes isomorphes: ces groupes possèdent un seul axe hélicoïdal). De plus tout couple d'éléments isomorphes engendre un sous groupe (Pma2 et Pbm2 engendrent le sousgroupe Pmm2; Pma2; Pbm2; Pba2). Enfin un élément engendre le sous-groupe de ses puissances: P4,2,2 engendre le sous-groupe P422; P41212; P4222; P43212.

Remarque: Soit k un vecteur de la première zone tel que $G_k = G$ (k dépend de G, non de G_e). Grâce à la relation (1), on peut associer à k une représentation avec poids de G telle que le facteur poids soit:

$$\lambda(\alpha,\beta) = \exp(i\mathbf{k} \cdot \mathbf{T}_{\alpha,\beta}). \tag{6}$$

Fixons alors k et envisageons tous les groupes G_e de l'ensemble (T,G). A chacun d'eux correspond un poids; à la somme de deux groupes correspond le produit des deux poids correspondants. Quand Ge décrit (T,G) on engendre un sous-groupe M' du groupe multiplicateur M de G^{\dagger} . Considérons les éléments (T,G)' de (T,G) tels que $\tau_{\alpha} \perp \mathbf{k}, \forall_{\alpha}$; ils donnent le poids unité, élément identité de M'. Donc l'ordre de M' est en général inférieur à celui de (T, G).

Application à l'énumération des groupes d'espace

La propriété, suivant laquelle les groupes d'espace de réseau et de classe donnés forment un groupe, permet de simplifier la construction des groupes d'espace.

Soit α un générateur de G; on suppose τ_{α} parallèle à une direction ou à un plan donnés, les translations associées aux autres générateurs étant supposés nulles (les valeurs possibles de τ_{α} dépendent de l'ordre de α dans la classe G). On en déduit un sous-groupe $(T,G)_{\alpha}$ de (T,G), puis on 'libère' les translations associées à chacun des autres générateurs de G.

Autrement dit, soit un jeu de générateurs de G: à chaque générateur α , on associe un générateur de (T,G), ou plusieurs générateurs équivalents géométriquement si α peut prendre plusieurs positions équivalentes par rapport au réseau. $(T,G)_a$ est d'ordre fini; il en est de même de (T,G), produit direct des différents groupes $(T,G)_{\alpha}$.

Exemple 1. Groupe $(P, mm2_z)$. On choisit les générateurs: m_{xz} et 2_z . On fixe d'abord $\tau(2_z) = 0$ et on choisit à titre d'essai: $\tau(m_{yz}) = (\frac{1}{2}, 0, 0)$; on vérifie qu'on forme ainsi le groupe Pma2. D'où les groupes: Pmm2, Pma2 et Pbm2 équivalents, et leur somme Pba2.

On peut choisir aussi $\tau(m_{yz}) = (0, 0, \frac{1}{2})$ d'où les groupes: Pcc2, Pnc2, Pcn2, Pnn2.

^{*} Un groupe d'espace hémisymmorphique ne possède pas d'axe hélicoïdal.

 $[\]dagger$ On appelle groupe multiplicateur M d'un groupe G le groupe abélien formé par les facteurs poids non-équivalents des différentes représentations avec poids de G.

On cherche ensuite un groupe d'espace dans lequel 2_z est hélicoïdal, et m_{xz} sans glissement; on construit aisément $Pmc2_1$, d'où 8 autres groupes par addition aux précédents.

Exemple 2. Groupe (P,4mm). On choisit les générateurs 4_z et m_{yz} . On suppose d'abord: $\tau(4_z)=0$; $\tau(m_{yz})\neq 0$, et on essaie: $\tau(m_{yz})=(0,\frac{1}{2},0)$; $(0,0,\frac{1}{2})$. D'où les groupes: P4mm, P4bm, P4cc, P4nc.

Puis on suppose: $\tau(m_{yz})=0$, $\tau(4_z)\neq 0$. On ne peut former aucun groupe avec $\tau(4_z)=(0,0,\frac{1}{4})$; d'où les seuls groupes: $P4_2mc$, $P4_2bc$, $P4_2cm$, $P4_2mm$.

Si maintenant le réseau est I, les 8 groupes précédents fournissent les groupes I4mm et I4cm (le caractère hélicoïdal de 4z disparaît à cause de la translation I). On doit alors chercher des groupes tels que $\tau(4z) \neq 0$. La translation I rend possible l'existence d'un axe 4_1 d'où les solutions $I4_1md$, et $I4_1cd$. Notons que:

$$2(I4_1md) = I4_2mn \equiv I4mc$$
,
 $3(I4_1md) = I4_3md \equiv I4_1md$.

Exemple 3. Groupe (P, m3m). Les générateurs de la classe m3m sont les suivants:

$$2x, 2y, 3_{111}, 2_{x\bar{y}}, \bar{1}$$
, puisque: $m3m = 432 \times \bar{1}$ et:

$$432 = (2_x 2_y 2_z \wedge 3_{111}) \wedge 2_{x\bar{y}} = 23 \wedge 2_{x\bar{y}}$$
.

On construit aisément les groupes: Pm3m symmorphique, Pm3n et Pn3m, d'où on déduit l'existence de Pn3n.

Si le réseau est *I*, les groupes suivants existent évidemment: *Im3m*, *Im3n*, *Im3m*, *Im3m*; tous se ramènent à *Im3m* en tenant compte de la translation *I*, *Ia3d* est un groupe nouveau.

Si le réseau est F, Fm3m, Fm3n, Fn3m et Fn3n fournissent: Fm3m et Fm3c. Une solution nouvelle est Fd3m, d'où l'existence de Fd3c.

Remarque: On peut déduire de ce qui précède un ordre logique de description des groupes d'espace de classe donnée.

- (1) On choisit un ordre arbitraire d'énumération des réseaux (P, A, B, C, I, F).
- (2) On choisit un jeu de générateurs α , β , γ , ... de la classe (ex. 432: 2x, 2y, 3_{111} , 2_{xy}). On décrit d'abord les groupes d'espace où $\tau_{\alpha} \neq 0$ puis ceux où $\tau_{\beta} \neq 0$ puis ceux où $\tau_{\alpha} \neq 0$, $\tau_{\beta} \neq 0$, et ainsi de suite.

Propriété d'additivité des groupes magnétiques

Nous allons montrer que les groupes magnétiques possèdent une propriété d'additivité analogue à celle des groupes d'espace.

Remarque préliminaire: Les classes magnétiques G_f associées à une classe cristallographique G donnée forment un groupe abélien. A chaque classe G_f correspond en effet une représentation Γ_f réelle de dimension 1 de G, et ces représentations forment un groupe abélien (Sivardière, 1968; Bertaut, 1968).

De la même manière, à chaque représentation Γ_{kj} d'un groupe d'espace G, réelle de dimension 1, correspond un groupe magnétique G_{kj} . Ces représentations forment un groupe abélien, on a ainsi:

$$\Gamma_{\mathbf{k}j} \cdot \Gamma_{\mathbf{k}'j'} = \Gamma_{\mathbf{k}+\mathbf{k}', \varphi} ,$$

$$\Gamma_{\mathbf{o}j} \cdot \Gamma_{\mathbf{o}j'} = \Gamma_{\mathbf{o}\varphi} ,$$

$$\Gamma_{\mathbf{k}j} = \Gamma_{\mathbf{o}j} \cdot \Gamma_{\mathbf{k}1} .$$
(7)

 $(\Gamma_{oj}$ est une représentation engendrée par la représentation Γ_j du groupe ponctuel; dans Γ_{k1} toutes les rotations ont le caractère +1).

Par suite les groupes magnétiques $G_{\mathbf{k}j}$ associés à un même groupe d'espace G forment un groupe abélien. Les groupes tels que $\mathbf{k} = 0$ (réseau non magnétique) forment un sous-groupe. Le groupe des $G_{\mathbf{k}j}$ peut contenir des groupes géométriquement équivalents.

Exemples:
$$Pm'a2' + Pma'2' = Pm'a'2$$
,
 $P_{2b}ma2 + Pm'a2' = P_{2b}m'a2'$,
 $P_{2b}ma2 + P_{2c}ma2 = A_{c}ma2$.

Structure des groupes magnétiques (Janner, 1966)

- (1) Un groupe G_{0j} est l'extension d'une classe magnétique G_j par un réseau de Bravais T, défini par une application de $G_j \times G_j$ dans T.
- (2) Un groupe G_{kj} est l'extension de la classe magnétique G_j par un réseau magnétique T_M , définie par une application de $G_j \times G_j$ dans T_M .

Si le groupe magnétique est du type G_{k1} l'application se fait seulement sur des translations; si le groupe est du type G_{kj} , l'application fait intervenir aussi des antranslations.

Propriétés d'additivité

(1) Les groupes G_{0j} , de classe G_j et de réseau T donnés, forment un groupe abélien (T, G_j) , dont le groupe symmorphique de classe G_j est l'élément unité.

D'après la remarque préliminaire, les groupes G_{oj} , j variable, forment un groupe (T,G) comprenant les groupes G_{oj} , dont le groupe symmorphique de classe G est l'élément unité.

Ainsi:

$$Pm'a2' + Pc'a2'_1 = Pc'm2'_1$$
,
 $Pma'2' + Pc'a2'_1 = Pc'm'2_1$.

(2) De même les groupes G_{kl} , de classe G et de réseau magnétique T_M donnés, forment un groupe $(T_M, G)_1$. L'élément unité est le groupe symmorphique $T_M \wedge G$. Ainsi:

$$P_{2b}ma2 + P_{2b}mc2_1 = P_{2b}mn2_1$$
,
 $P_{2b}42_12 + P_{2c}4_222 = P_{2c}4_22_12$.

(Éléments unités: $P_{2b}mm2$ et $P_{2c}422$ respectivement.)

(3) Les groupes G_{kj} , k fixe et j variable, de classe G et de réseau T_M donnés, forment un groupe dont un

sous-groupe est formé par les G_{k1} , et dont l'élément unité est G_{k1} avec G symmorphique:

$$P_{2b}m'a2' + P_{2b}mc2_1 = P_{2b}m'n2'_1$$
,
 $P_{2b}ma2 + P_{2b}m'c'2_1 = P_{2b}m'n'2_1$ ($\equiv P_ana2_1$).

Les groupes magnétiques de classe cristallographique et de réseau magnétique T_M donnés, forment un groupe abélien (T_M, G) . Cette propriété peut simplifier la recherche des groupes magnétiques.

Interprétation

Soient G_1 et G_2 deux groupes d'espace de même classe et de même réseau. Si pour k donné, tous deux ont au moins une représentation réelle de dimension 1, il en est de même de leur somme.

Si k est perpendiculaire à toutes les translations τ_{α}^1 et τ_{α}^2 (et alors il existe des représentations Γ_{ki} et Γ_{kj} de G_1 et G_2 réelles de dimension 1), il est perpendiculaire aux translations τ_{α}^1 et τ_{α}^2 . Par conséquent si à G_1 et G_2 sont associés des groupes magnétiques G_k^1 et G_k^2 , à $G_1 + G_2$ sera associé un groupe magnétique de même réseau.

Si \mathbf{k} n'est pas perpendiculaire à toutes les translations τ_{α}^1 et τ_{α}^2 , soit $(\alpha|\tau_{\alpha}^1)$ un élément de G_1 tel que τ_{α}^1 ait une composante sur \mathbf{k} , n_{α} l'ordre de α . Si G_1 possède au moins une représentation Γ_{kl} de dimension 1, la translation $\mathbf{T}_{\alpha}^1 = n_{\alpha} \tau_{\alpha}^1$ y a le caractère $\chi_{kl}(\varepsilon|\mathbf{T}_{\alpha}^1) = \pm 1$ (Olbrychski, 1963); Γ_{kl} n'est réelle que si $(\alpha|\tau_{\alpha}^1)$ est un axe 3_1 , 3_2 , 4_2 , 6_2 ou 6_4 .

De même si G_2 possède au moins une représentation Γ_{kl} réelle de dimension 1, $(\alpha|\tau_{\alpha}^2)$ est aussi un axe 3_1 , 3_2 , 4_2 , 6_2 ou 6_4 . Il en est alors de même de $(\alpha|\tau_{\alpha}^1+\tau_{\alpha}^2)$, élément de $G=G_1+G_2$, et par suite il existe une représentation $\Gamma_{k\varphi}$ de G réelle de dimension 1, on peut donc définir la somme $G_{k\varphi}$ des groupes magnétiques G_{kl}^1 et G_{kl}^2 .

Interprétation dans l'espace de Fourier

Groupes d'espace

Puisque les groupes d'espace G_e de réseau T et de classe G forment un groupe, il en est de même des groupes ponctuels complexes (isomorphes de G), introduits par Bienenstock & Ewald (1962), qui représentent ces groupes d'espace dans l'espace de Fourier: l'élément unité est le groupe G, il est associé au groupe symmorphique $T \wedge G$.

Plus précisément, si K est un noeud de réseau réciproque (ce réseau dépend de T et non de G_e), le facteur de structure trigonométrique $\xi(K)$ se transforme de la manière suivante quand on fait subir au cristal l'opération ($\alpha|\tau_{\alpha}$) (Bertaut, 1955):

$$\xi(\mathbf{K}\alpha) = \exp\left(-2\pi i \mathbf{K} \cdot \mathbf{\tau}_{\alpha}\right) \xi(\mathbf{K}) . \tag{8}$$

L'espace de Fourier, noeuds K affectés des poids $\xi(K)$, n'est donc invariant dans G que si G_e est symmorphique; si G_e n'est pas symmorphique, la rotation de cet espace s'accompagne d'une rotation des phases

des facteurs de structure. Par conséquent les quantités $\exp(-2\pi i \mathbf{K} \cdot \mathbf{\tau}_{\alpha})$ (K fixe, α variable) forment une représentation $\Gamma_{\mathbf{K}}$ (sans poids) de G puisque les rotations de phase doivent former un groupe homomorphe de G; on a en effet:

$$\exp \left[-2\pi i \mathbf{K} \cdot (\mathbf{\tau}_{\alpha} + \alpha \mathbf{\tau}_{\beta}) \right]$$

$$= \exp \left(-2\pi i \mathbf{K} \cdot \mathbf{T}_{\alpha\beta} \right) \exp \left(-2\pi i \mathbf{K} \cdot \mathbf{\tau}_{\alpha\beta} \right)$$

$$= \exp \left(-2\pi i \mathbf{K} \cdot \mathbf{\tau}_{\alpha\beta} \right). \tag{9}$$

En particulier le noyau de Γ_{K} , ensemble des éléments α de G tels que τ_{α} =0, forme un sous-groupe invariant de G.

A la somme G_e de deux groupes G_e^1 et G_e^2 correspond le produit de deux représentations $\Gamma_{\mathbf{K}}^1$ et $\Gamma_{\mathbf{K}}^2$, à une dimension, de G puisque: $\tau_{\alpha} = \tau_{\alpha}^1 + \tau_{\alpha}^2$. On peut donc associer à (T,G) un sous-groupe du groupe des représentations de dimension un de G.

Exemple: Groupe (P, mm2); K = 101:

Groupes magnétiques

Soit $G_{\mathbf{k}i}$ un groupe magnétique associé au groupe d'espace G_e . Considérons l'espace réciproque magnétique, c'est-à-dire l'ensemble des points réciproques $\mathbf{K} \pm \mathbf{k}$ affectés des facteurs de structure magnétique $\xi_m(\mathbf{K} \pm \mathbf{k}) = \sum_i S_i \exp\left[2\pi i(\mathbf{K} \pm \mathbf{k}) \cdot \mathbf{r}i\right]$ (cet espace ne

dépend que du réseau magnétique direct, donc de k). Si k=0:

$$\mathbf{r}_i = \alpha_i \mathbf{r} + \tau_{\alpha i} \text{ modulo } T. \tag{10}$$

$$S_i = \pm \alpha_i(S) = \gamma_i(\alpha_i)\alpha_i(S). \tag{11}$$

 $[\chi_j(\alpha_i) = \pm 1$ suivant que $(\alpha|\tau_\alpha)$ est un opérateur ou un antiopérateur.]

Donc:

$$\xi_m(\mathbf{K}\alpha) = \pm \exp\left(-2\pi i \mathbf{K} \cdot \mathbf{\tau}_{\alpha}\right) \xi_m(\mathbf{K}) . \tag{12}$$

Pour un vecteur K donné et un groupe d'espace G_e donné, les quantités $\chi_j(\alpha_i) \exp(-2\pi i \mathbf{K} \cdot \tau_\alpha)$ forment une représentation Γ à une dimension de G; si G_e est symmorphique, cette représentation est Γ_j , qui définit la classe magnétique G_j . Donc le groupe des groupes magnétiques G_{0j} de réseau T et de classe cristallographique G engendre un sous-groupe du groupe des représentations de dimension un de G.

Si $\mathbf{k} \neq 0$ ($k_t = 0, \frac{1}{2}$): voyons comment se transforme le facteur de structure $\xi_m(\mathbf{K} \pm \mathbf{k})$. Ici les opérateurs à en-

visager sont:

$$A_i = (\alpha_i | \tau_i + \mathbf{T}_i)$$
, $\mathbf{r}_i = \alpha_i \mathbf{r} + \tau_i + \mathbf{T}_i$

modulo une translation $T_{\mathbf{k}}$ (en effet exp $(2\pi i \mathbf{K} \pm \mathbf{k} \cdot \mathbf{T}_{\mathbf{k}})$ = +1) d'où:

$$\xi_m[(\mathbf{K} \pm \mathbf{k}) \cdot \alpha_i] = \chi_{ki}^{-1}(A_i) \exp(-2\pi i \mathbf{K} \pm \mathbf{k} \cdot \tau_i) \alpha_i^{-1} [\xi_m(\mathbf{K} \pm \mathbf{k})].$$

 $\chi_{kj}(A_i) = \pm 1$ suivant que A_i est un opérateur ou un antiopérateur. Les quantités $\chi_{kj}^{-1}(A_i) \exp(-2\pi i \mathbf{K} \pm \mathbf{k} \cdot \mathbf{\tau}_i)$ forment une représentation Γ à une dimension du groupe $G_e/T_{\mathbf{k}}$ ($T_{\mathbf{k}}$: noyau de Γ_{kj}).

Par conséquent si on choisit des vecteurs K et k (c'est-à-dire le réseau magnétique et son orientation dans le réseau cristallographique), quand le groupe magnétique décrit (T_M, G) , Γ engendre un sous-groupe

du groupe des représentations de dimension un de G_e/T_{tr} .

Ce qui précède montre bien qu'on ne peut pas définir la somme de deux groupes magnétiques associés à deux éléments distincts de (T,G) et possédant des réseaux magnétiques différents.

Références

ASCHER, E. & JANNER, A. (1965). Helv. Phys. Acta, 38, 551. BERTAUT, E. F. (1955). Acta Cryst. 8, 823. BERTAUT, E. F. (1968). Acta Cryst. A 24, 217. BIENENSTOCK, A. & EWALD, P. P. (1962). Phys. Rev. 15, 1253

International Tables for X-ray Crystallography (1952). Vol.I. Birmingham: Kynoch Press.

Janner, A. (1966). *Helv. Phys. Acta*, **39**, 665. Olbrychski, K. (1963). *Phys. Stat. Sol.* **3**, 1868. Sivardiere, J. (1968). À paraître.

Acta Cryst. (1969). A25, 367

The Extraction of the Weighted Periodic Vector Set from the Patterson Function

By G. R. GOLDAK

College of Engineering, University of Saskatchewan, Saskatoon, Canada

(Received 29 January 1968 and in revised form 20 August 1968)

A new method is presented for the extraction of the weighted periodic vector set from the Patterson function. The method depends on the determination of a generalized polynomial which approximates the Patterson function. The coefficients of this polynomial indirectly establish the weighted periodic vector set. The method is completely independent of symmetry and the resolution of the Patterson function. In practice, the value of the results obtained is indirectly limited by the number of atoms per unit cell.

It is now well-known that a weighted periodic vector set (Buerger, 1959) can be associated with the Patterson function of an arbitrary crystal. In many Patterson methods of structure analysis, the Patterson function is regarded as a rather blurred representation of the weighted periodic vector set. In the following discussion, weighted periodic vector sets will be referred to simply as periodic vector sets. For a crystal containing N atoms per unit cell, the periodic vector set consists of N periodic weighted images of the crystal structure. The essence of the phase problem lies in the separation of the various points of the periodic vector set into these images. This separation can be accomplished for periodic vector sets by the image-seeking method of Buerger (1959). Tokonami & Hosoya (1965) have also developed a procedure for unravelling periodic vector sets, and their method depends explicitly on certain periodic characteristics of the periodic vector set. These considerations indicate that, if the weighted periodic vector set could be determined from the Patterson function in some way, the crystal structure could be obtained, at least in principle, by means of the above vector-set methods.

The problem of recovering the periodic vector set from the Patterson function has been approached mainly via Patterson sharpening procedures, but these methods do not appear to be capable of yielding the periodic vector set in general cases. This communication presents a preliminary account of a new method for the extraction of the periodic vector set from the Patterson function. The method is based on the theory of approximation in generalized polynomials (Cheney, 1966). It provides an approach which can be applied to the problems of crystal-structure analysis in several different ways, but this note will deal only with the most straightforward of these, which involves the Patterson function.

For simplicity, the case of a Patterson function projected onto some crystal axis will be considered first. An expansion of its Fourier coefficients shows that the